دانلود کتاب Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos (به فارسی: حرکات شبه تناوبی در خانواده های سیستم های پویا: نظم در میان هرج و مرج) نوشته شده توسط «Hendrik W. Broer – George B. Huitema – Mikhail B. Sevryuk (auth.)»
اطلاعات کتاب حرکات شبه تناوبی در خانواده های سیستم های پویا: نظم در میان هرج و مرج
موضوع اصلی: سیستم های دینامیکی
نوع: کتاب الکترونیکی
ناشر: Springer-Verlag Berlin Heidelberg
نویسنده: Hendrik W. Broer – George B. Huitema – Mikhail B. Sevryuk (auth.)
زبان: English
فرمت کتاب: djvu (قابل تبدیل به سایر فرمت ها)
سال انتشار: 1996
تعداد صفحه: 200
حجم کتاب: 3 مگابایت
کد کتاب: 9783540620259 , 3540620257
نوبت چاپ: 1
توضیحات کتاب حرکات شبه تناوبی در خانواده های سیستم های پویا: نظم در میان هرج و مرج
این کتاب به پدیده حرکت شبه تناوبی در سیستم های دینامیکی اختصاص دارد. چنین حرکتی در فضای فاز یک چنبره ثابت را پر می کند. این پدیده بیشتر از دینامیک همیلتونی آشناست. سیستمهای همیلتونی بهخاطر استفادهشان در مدلسازی دینامیک مربوط به مکانیک بدون اصطکاک، از جمله حرکات سیارهای و ماه شناخته شدهاند. در این زمینه تصویر کلی به صورت زیر به نظر می رسد. از یک سو، سیستمهای همیلتونی رخ میدهند که در نظم کامل هستند: اینها سیستمهای ادغامپذیری هستند که در آنها همه حرکتها به توری ثابت محدود میشوند. از سوی دیگر، سیستم هایی وجود دارند که در هر سطح انرژی کاملاً بی نظم هستند. در این بین، ما سیستمهایی را میشناسیم که از آنجایی که اغتشاشات به اندازه کافی کوچک از آنهایی که قابل ادغام هستند، همزیستی نظم (توری غیرمتغیر حامل دینامیک شبه دورهای) و آشوب (به اصطلاح لایههای تصادفی) را نشان میدهند. نظریه کلموگروف-آرنولد-موزر (KAM) در مورد حرکات شبه تناوبی به ما می گوید که وقوع چنین حرکاتی در کلاس همه سیستم های همیلتونی باز است: به عبارت دیگر، این پدیده ای است که تحت اغتشاشات هامیلتونی کوچک پایدار است. علاوه بر این، به طور کلی، برای هر سیستمی از این قبیل، اتحاد toriهای شبه تناوبی در فضای فاز، مجموعهای متراکم از اندازهگیری مثبت Lebesgue است، به اصطلاح خانواده کانتور. این واقعیت نشان میدهد که کلاسهای باز سیستمهای همیلتونی وجود دارند که ارگودیک نیستند. هدف اصلی این کتاب بررسی تغییرات در این تصویر زمانی است که کلاسهای دیگر سیستمها – یا زمینهها – در نظر گرفته میشوند.
This book is devoted to the phenomenon of quasi-periodic motion in dynamical systems. Such a motion in the phase space densely fills up an invariant torus. This phenomenon is most familiar from Hamiltonian dynamics. Hamiltonian systems are well known for their use in modelling the dynamics related to frictionless mechanics, including the planetary and lunar motions. In this context the general picture appears to be as follows. On the one hand, Hamiltonian systems occur that are in complete order: these are the integrable systems where all motion is confined to invariant tori. On the other hand, systems exist that are entirely chaotic on each energy level. In between we know systems that, being sufficiently small perturbations of integrable ones, exhibit coexistence of order (invariant tori carrying quasi-periodic dynamics) and chaos (the so called stochastic layers). The Kolmogorov-Arnol’d-Moser (KAM) theory on quasi-periodic motions tells us that the occurrence of such motions is open within the class of all Hamiltonian systems: in other words, it is a phenomenon persistent under small Hamiltonian perturbations. Moreover, generally, for any such system the union of quasi-periodic tori in the phase space is a nowhere dense set of positive Lebesgue measure, a so called Cantor family. This fact implies that open classes of Hamiltonian systems exist that are not ergodic. The main aim of the book is to study the changes in this picture when other classes of systems – or contexts – are considered.
دانلود کتاب «حرکات شبه تناوبی در خانواده های سیستم های پویا: نظم در میان هرج و مرج»
برای دریافت کد تخفیف ۲۰ درصدی این کتاب، ابتدا صفحه اینستاگرام کازرون آنلاین (@kazerun.online ) را دنبال کنید. سپس، کلمه «بلیان» را در دایرکت ارسال کنید تا کد تخفیف به شما ارسال شود.