کتاب الکترونیکی

فرآیندهای گاوسی برای یادگیری ماشینی

Gaussian Processes for Machine Learning

دانلود کتاب Gaussian Processes for Machine Learning (به فارسی: فرآیندهای گاوسی برای یادگیری ماشینی) نوشته شده توسط «Carl Edward Rasmussen – Christopher K. I. Williams»


اطلاعات کتاب فرآیندهای گاوسی برای یادگیری ماشینی

موضوع اصلی: تحصیلات

نوع: کتاب الکترونیکی

ناشر: The MIT Press

نویسنده: Carl Edward Rasmussen – Christopher K. I. Williams

زبان: English

فرمت کتاب: pdf (قابل تبدیل به سایر فرمت ها)

سال انتشار: 2005

تعداد صفحه: 266

حجم کتاب: 39 مگابایت

کد کتاب: 0-262-18253-X , 9780262182539

توضیحات کتاب فرآیندهای گاوسی برای یادگیری ماشینی

برنده، جایزه دی گروت 2009 برای بهترین کتاب در علم آمار، که توسط انجمن بین المللی تحلیل بیزی اعطا شد. فرآیندهای گاوسی (GPs) یک رویکرد اصولی، عملی و احتمالی برای یادگیری در ماشین‌های هسته ارائه می‌کنند. پزشکان عمومی در دهه گذشته توجه بیشتری را در جامعه یادگیری ماشینی به خود جلب کرده‌اند و این کتاب یک درمان سیستماتیک و یکپارچه از جنبه‌های نظری و عملی پزشکان عمومی در یادگیری ماشین ارائه می‌کند. این درمان جامع و مستقل است و محققان و دانشجویان در یادگیری ماشین و آمار کاربردی را هدف قرار داده است. این کتاب با مسئله یادگیری نظارت شده برای رگرسیون و طبقه‌بندی سروکار دارد و شامل الگوریتم‌های دقیق است. طیف گسترده ای از توابع کوواریانس (هسته) ارائه شده و خواص آنها مورد بحث قرار گرفته است. انتخاب مدل هم از دیدگاه بیزی و هم از دیدگاه کلاسیک مورد بحث قرار می گیرد. بسیاری از اتصالات به سایر تکنیک‌های شناخته‌شده از یادگیری ماشین و آمار مورد بحث قرار می‌گیرند، از جمله ماشین‌های بردار پشتیبان، شبکه‌های عصبی، خطوط، شبکه‌های منظم‌سازی، ماشین‌های بردار مرتبط و غیره. مسائل نظری از جمله منحنی های یادگیری و چارچوب PAC-Bayesian درمان می شوند و چندین روش تقریبی برای یادگیری با مجموعه داده های بزرگ مورد بحث قرار می گیرند. این کتاب شامل مثال‌ها و تمرین‌های گویا است و کدها و مجموعه‌های داده در وب موجود است. ضمیمه ها پیشینه ریاضی و بحثی در مورد فرآیندهای مارکوف گاوسی ارائه می دهند.


Winner, 2009 DeGroot Prize for the best book in statistical science, awarded by the International Society for Bayesian Analysis. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

دانلود کتاب «فرآیندهای گاوسی برای یادگیری ماشینی»

مبلغی که بابت خرید کتاب می‌پردازیم به مراتب پایین‌تر از هزینه‌هایی است که در آینده بابت نخواندن آن خواهیم پرداخت.

برای دریافت کد تخفیف ۲۰ درصدی این کتاب، ابتدا صفحه اینستاگرام کازرون آنلاین (@kazerun.online ) را دنبال کنید. سپس، کلمه «بلیان» را در دایرکت ارسال کنید تا کد تخفیف به شما ارسال شود.