دانلود کتاب Codes and curves (به فارسی: کدها و منحنی ها) نوشته شده توسط «Judy L. Walker»
اطلاعات کتاب کدها و منحنی ها
موضوع اصلی: ریاضیات
نوع: کتاب الکترونیکی
ناشر: Amer Mathematical Society
نویسنده: Judy L. Walker
زبان: english
فرمت کتاب: PDF (قابل تبدیل به سایر فرمت ها)
سال انتشار: 2000
تعداد صفحه: 74
حجم فایل: 433 کیلوبایت
کد کتاب: 082182628X , 9780821826287
نوبت چاپ: web draft, 1991
توضیحات کتاب کدها و منحنی ها
هنگام انتقال اطلاعات، احتمال بروز خطا وجود دارد. این مشکل اهمیت فزاینده ای پیدا کرده است زیرا هر روز حجم عظیمی از اطلاعات به صورت الکترونیکی منتقل می شود. نظریه کدگذاری روشهای کارآمد بستهبندی دادهها را بررسی میکند تا بتوان این خطاها را شناسایی یا حتی تصحیح کرد.
ابزارهای سنتی تئوری کدگذاری از ترکیبات و نظریه گروه آمده است. با این حال، از زمان کار گوپا در اواخر دهه 1970، نظریه پردازان کدنویسی تکنیک هایی از هندسه جبری را به جعبه ابزار خود اضافه کردند. به طور خاص، با تفسیر مجدد کدهای رید-سولومون به عنوان حاصل از ارزیابی توابع مرتبط با مقسومگیرندهها در خط تصویری، میتوان نحوه تعریف کدهای جدید بر اساس مقسومکنندههای دیگر یا منحنیهای جبری دیگر را مشاهده کرد. به عنوان مثال، با استفاده از منحنی های مدولار بر روی میدان های محدود، Tsfasman، Vladut، و Zink نشان دادند که می توان دنباله ای از کدها را با پارامترهای مجانبی بهتر از کدهای شناخته شده قبلی تعریف کرد.
این کتاب بر اساس مجموعه ای از سخنرانی های نویسنده به عنوان بخشی از برنامه IAS/Park City Mathematics Institute (یوتا) در مورد هندسه جبری حسابی است. در اینجا خواننده با زمینه هیجان انگیز نظریه کدگذاری هندسی جبری آشنا می شود. نویسنده با ارائه مطالب با همان لحن محاورهای سخنرانیها، کدهای خطی، از جمله کدهای چرخهای، و کرانها و کرانهای مجانبی را در پارامترهای کدها پوشش میدهد. هندسه جبری با توجه خاص به منحنی های تصویری، توابع گویا و مقسوم علیه معرفی شده است. ساخت کدهای هندسی جبری داده شده است و نتیجه Tsfasman-Vladut-Zink که در بالا ذکر شد مورد بحث قرار گرفته است.
The traditional tools of coding theory have come from combinatorics and group theory. Since the work of Goppa in the late 1970s, however, coding theorists have added techniques from algebraic geometry to their toolboxes. In particular, by re-interpreting the Reed-Solomon codes as coming from evaluating functions associated to divisors on the projective line, one can see how to define new codes based on other divisors or on other algebraic curves. For instance, using modular curves over finite fields, Tsfasman, Vladut, and Zink showed that one can define a sequence of codes with asymptotically better parameters than any previously known codes.
This book is based on a series of lectures the author gave as part of the IAS/Park City Mathematics Institute (Utah) program on arithmetic algebraic geometry. Here, the reader is introduced to the exciting field of algebraic geometric coding theory. Presenting the material in the same conversational tone of the lectures, the author covers linear codes, including cyclic codes, and both bounds and asymptotic bounds on the parameters of codes. Algebraic geometry is introduced, with particular attention given to projective curves, rational functions and divisors. The construction of algebraic geometric codes is given, and the Tsfasman-Vladut-Zink result mentioned above is discussed.
برای دریافت کد تخفیف ۲۰ درصدی این کتاب، ابتدا صفحه اینستاگرام کازرون آنلاین (@kazerun.online ) را دنبال کنید. سپس، کلمه «بلیان» را در دایرکت ارسال کنید تا کد تخفیف به شما ارسال شود.